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Axisymmetric acoustic scattering by vortices
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The scattering of acoustic waves by compact three-dimensional axisymmetric vortices
is studied using direct numerical simulation in the case where the incoming wave is
aligned with the symmetry axis and the direction of propagation of the vortices. The
cases of scattering by Hill’s spherical vortex and Gaussian vortex rings are examined,
and results are compared with predictions obtained by matched asymptotic expansions
and the Born approximation. Good agreement is obtained for long waves, with the
Born approximation usually giving better predictions, especially as the difference in
scale between vortex and incoming waves decreases and as the Mach number of the
flow increases. An improved version of the Born approximation which takes into
account higher-order effects in Mach number gives the best agreement.

1. Introduction
The generation of sound by fluid flows has been an important area of research

since the pioneering work of Lighthill (1952). The scattering of sound by vortices has
possibly an even longer history (Obukhov 1941), with applications to the propagation
of sound through turbulence (Kraichnan 1953; Lighthill 1953; Batchelor 1956) and
through the wakes of engines (the ‘aircraft wake problem’ mentioned by Ferziger 1974).
More recently, Lund & Rojas (1989) proposed using scattering by ultrasound to probe
turbulence in laboratory experiments. New non-invasive measurement techniques
have since been developed using this idea (Labbé & Pinton 1998; Oljaca et al. 1998;
Dernoncourt, Pinton & Fauve 1998; Manneville et al. 1999).

The problem of the scattering of acoustic waves by simple vortices is neither new nor
unexplored (Obukhov 1941; Lindsay 1948; Müller & Matschat 1959; Pitaevskii 1959;
Fetter 1964; Georges 1972; Ferziger 1974; O’Shea 1975; Golemshtok & Fabrikant
1980; Kambe & Mya Oo 1981; Tanaka & Ishii 1981; Fabrikant 1983; Howe 1983;
Kop’ev & Leont’ev 1987; Reinschke, Möhring & Obermeier 1997). Most of these
studies were limited to simple analytical distributions such as point vortices, which
were sometimes physically unrealistic; the studies also did not always proceed from a
rational set of equations. These studies mostly investigated two limits: one in which
the acoustic waves have small wavelength compared with the scale of the vortex – the
WKB limit; the other in which the acoustic waves have long wavelength compared
with the scale of the vortex – the Born limit. The Born limit uses Lighthill’s acoustic
analogy, which will be explained later, to obtain a solution.

Ford & Llewellyn Smith (1999) investigated the problem of scattering of a plane
sound wave by a two-dimensional vortex using matched asymptotic expansions
(MAE) in the Born limit. For small Mach number M, the equations are solved
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as an asymptotic expansion in M and δ, the non-dimensional amplitude of the in-
coming wave. There are then two different regions in the flow: a region centred on
the vortex with the length scale of the vortex L, and a wave region where the typical
length scale is the acoustic wavelength λ ∼ LM−1. This approach helped resolve the
apparent singularity in the forward scatter direction obtained previously (see also
Sakov 1993 and Howe 1999). The same ideas have since been used to develop a
general formulation for the theoretical solution of the scattering of plane waves by
vortices in three dimensions using MAE (Llewellyn Smith & Ford 2001a, b, here-
after LSFa, b). These results essentially show that the acoustic analogy predictions
are appropriate provided the vortical flow is not evolving rapidly due to instabil-
ity or incipient singularity formation (should such a scenario prove possible). Howe
(1984) discussed the influence of the time-dependence of a body of turbulence on the
interaction with an incident sound wave.

Problems of sound generation by flows have also been considered using computer
simulations, and this field has become known as computational aeroacoustics. An
excellent collection of articles is Hardin & Hussaini (1993). Computational aero-
acoustics encompasses a wide span of techniques, from direct numerical simulations
(DNS) of compressible flows to solutions of the acoustic analogy with a given flow
field. DNS calculations to date have mainly been restricted to two dimensions or to
axisymmetric situations (Colonius, Lele & Moin 1994; Mitchell, Lele & Moin 1995,
1999; Tang & Ko 1997; Inoue & Hattori 1999; Grasso & Pirozzoli 2000; Inoue,
Hattori & Sasaki 2000).

In this paper, we present results from DNS studies of axisymmetric scattering of
plane acoustic waves by Hill’s spherical vortex (HSV) and by Gaussian vortex rings,
both of which may be viewed as prototypes of propagating three-dimensional vortices.
As in the vast majority of previous work, we limit ourselves to small-Mach-number
flow. In § 2 we outline the problem, while in § 3 we review previous theoretical work on
acoustic scattering by three-dimensional vortices using MAE and the Lighthill acoustic
analogy. We present results of the DNS in § 4 where we discuss the dependence on
the parameters of the problem, and compare DNS scattering cross-sections to the
theoretical predictions outlined earlier. Finally, we conclude in § 5.

2. Statement of the problem
2.1. Governing equations and flow configuration

Figure 1 shows a schematic diagram of the flow configuration. A plane incoming
wave whose amplitude is small interacts with a vortex. Both viscous effects and the
thermal diffusion are assumed to be small; they are neglected in the analysis, while
they are small but non-zero in the numerical calculations.

The equations of motion for a homentropic gas are

ρa
Du

Dt
= −∇pa, (2.1a)

Dρa
Dt

+ ρa∇ · u = 0, (2.1b)

pa

p0

=

(
ρa

ρ0

)γ
. (2.1c)

Here, u is the velocity, pa is the absolute pressure, and ρa is the absolute density. The
relation (2.1c) is the equation of state for a homentropic ideal gas, and γ > 1 is the
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Figure 1. Schematic diagram of flow configuration.

constant ratio of specific heats. The constants p0 and ρ0 are reference values of the
pressure and density respectively, which we shall take to be the uniform values of
pressure and density when the fluid is at rest.

The typical flow velocity and the size of the ‘vortical region’ in which vorticity
is concentrated are denoted by U and L, respectively. The Mach number M of the
vortex is then defined to be M ≡ U/c0 � 1, where c0 ≡ (γp0/ρ0)

1/2 is the speed of
linear sound waves in (2.1). We consider the case where M is small. The velocity scale
U and length scale L define a time scale τv ≡ L/U appropriate to flow in the vortical
region.

A plane acoustic wave is incident from infinity with wavelength λ, frequency ω0,
and hence wavenumber k0 = 2π/λ, with ω0 = k0c0.

2.2. Hill’s vortex

Hill’s spherical vortex (HSV) is the simplest exact axisymmetric solution of the
three-dimensional vorticity equations. It has a simple form in a frame in which
it is stationary, and there is then a uniform flow −Uez at infinity. The Stokes
streamfunction ψ′0 is then

ψ′0
UR2

0

=

{
3
4
[1− (r/R0)

2](r/R0)
2 sin2θ, r/R0 < 1,

− 1
2
[1− (R0/r)

3](r/R0)
2 sin2θ, r/R0 > 1.

(2.2)

In this expression, r is the distance from the centre of the vortex, and θ is the usual
polar angle. The length scale L is set to be R0, which is the radius of the vortex.

In a frame in which the medium is at rest at infinity, the streamfunction for the
moving HSV becomes

ψ0

UR2
0

=

{
1
4
[5− 3(r/R0)

2](r/R0)
2 sin2θ, r/R0 < 1,

1
2
(R0/r) sin2θ, r/R0 > 1.

(2.3)

Here r is the distance from the moving centre of the vortex, which has velocity Uez .
LSFb calculate the axisymmetric acoustic scattering by HSV explicitly, using the

fact that there is a conserved quantity (see the instability analysis of Moffatt & Moore
1978). For the non-axisymmetric case, such an exact solution is no longer possible.
(Fukuyu, Ruzi & Kanai 1994 investigated the general non-axisymmetric stability
problem numerically.)
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2.3. Gaussian vortex ring

Although HSV is one of the most important solutions to the Euler equation, it
is not close to the vortex rings observed experimentally. Most of the vortex rings
observed in experiments have thin cores. Norbury (1973) found a family of vortex
rings characterized by the ratio of the core radius and the ring radius, of which
HSV is the fattest member. Norbury’s vortex rings have vorticity proportional to the
distance from the axis of symmetry and the vorticity is discontinuous at the boundary
of the vortex core.

In addition to HSV, we deal with a more realistic vortex ring whose vorticity
distribution is given by a Gaussian distribution

ωϕ(z, σ) =
Γ

πR2
c

exp

[
−z

2 + (σ − R0)
2

R2
c

]
, (2.4)

where σ is the distance from the axis of symmetry, Γ is the circulation, Rc is the
core radius and R0 is the radius of the ring. As shown by Saffman (1970), for
viscous vortex rings the vorticity distribution evolves into the Gaussian distribution
at leading order provided that its initial core radius is sufficiently small (for the
higher-order corrections, see Fukumoto & Moffatt 2000). Experimentally observed
vorticity distributions are often close to the Gaussian distributions (e.g. Sullivan,
Widnall & Ezekiel 1973).

3. Theoretical results
3.1. Acoustic analogy solution and its improved version

The approach that we call the acoustic analogy here usually proceeds as follows.
Following Lighthill (1952), the equations are rewritten as a single inhomogeneous
wave equation with all the remaining terms on the right-hand side. The quadrupole
source term is usually written ∂2Tij/∂xi∂xj , where xi are Cartesian coordinates and
Tij is the Lighthill tensor. For small-Mach-number flows, the tensor is approximated
by Tij ≈ ρ0uiuj , where ρ0 is the mean density, and the ui are velocity components. In
turn, the scattered field is then computed by expanding

Tij ≈ ρ0vivj + ρ0(u
L
i vj + viu

L
j ) + ρ0u

L
i u

L
j , (3.1)

where uLi and vi are the velocities due to the acoustic wave and the vortex flow
respectively (see Kambe & Mya Oo 1981).

There is no a priori reason why this approximation to Tij should yield the correct
scattered sound, because the velocity field in the vicinity of the vortex is most definitely
not the superposition of wave and vortex. Nevertheless, the analysis of LSFa shows
that in general the acoustic analogy agrees with a rational MAE analysis in the limit
of large wavelength.

In fact, the first term in (3.1) does not contribute to the scattered sound field, since
it is steady. The last is usually neglected, and corresponds to wave–wave interaction.
The velocity scaling of the incoming wave in the inner region is given by ac0, where
a ≡ |pi|/ρ0c

2
0 is the non-dimensionalized amplitude of the incoming wave. Note

that a is related to δ ≡ |pi|/ρ0U
2, which is the non-dimensionalized amplitude used

in LSFa, by a = δM2. Thus, evaluating the size of the three different terms gives
ρ0M

2c2
0 (irrelevant), ρ0aMc

2
0 and ρ0a

2c2
0, which justifies our neglect of the wave–

wave term since a�M is normally satisfied as a is very small. (In our simulations,
a 6 O(10−5–10−4).) We shall later consider the first correction to the usual acoustic
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analogy solution including the neglected terms in (3.1). This comes from a term ρLvivj
where ρL is the density disturbance associated with the incoming acoustic wave. The
scaling for ρL is ρ0a, so the size of the correction term is ρ0aM

2c2
0, i.e. a factor of M

smaller than the dominant term.
The acoustic analogy solution of Kambe & May Oo (1981) is

p(r, θ, t) =
|pi|
r
f1(θ)eiωs(t−r/c0), (3.2)

f1(θ) = − ω2
s

2π(1−Mv cos θ)c3
0

Vn(κ0) cos θ, (3.3)

where Mv is the Mach number based on the speed of vortex, Vn(κ) is the Fourier
transform of the velocity component u · n and

κ0 = (1− β)k0n− k0i,

β = Mv(1− cos θ)/(1−Mv cos θ),

ωs = (1− β)ω0,

where n and i are the unit vectors in the directions of θ and the incoming wave,
respectively.

The above scattered wave includes the Doppler factor 1−Mv cos θ which is replaced
by unity for sufficiently small Mv . In other words the amplitude factor (3.3) includes
not only the leading-order term O(M) but also the next-order term O(M2). The
equation (3.3), however, is not sufficient as an approximation up to O(M2). The exact
Lighthill tensor for inviscid flow can be written as

Tij = (ρV + ρL)(vi + uLi )(vj + uLj ) + (pL − c2
0ρ

L)δij (3.4)

= ρV vivj + ρV (uLi vj + viu
L
j ) + ρLvivj + ρL(c2 − c2

0)δij + O(ρ0aM
3c2

0, ρ0a
2c2

0), (3.5)

where ρ = ρV + ρL, p = pV + pL, c2 = γpV/ρV and the superscript V denotes the steady
field due to the vortex. The terms ρLvivj and ρL(c2 − c2

0)δij give O(M2) contributions.
These terms lead to the following scattering amplitude factors if we replace ρL by the
incoming wave:

f2(n) = − ω2
s

4πc4
0

1

1−Mv cos θ
ninjB̃ij(κ0), (3.6)

f3(n) = − ω2
s

4πc4
0

1

1−Mv cos θ
C̃(κ0), (3.7)

where B̃ij(κ) and C̃(κ) are the Fourier transforms of uiuj and c2 − c2
0, respectively.

We call the sum of equations (3.3), (3.6) and (3.7) the improved Born approximation.
Appendix A details the derivation of scattering amplitudes (3.6) and (3.7).

3.2. MAE solution

The MAE approach of LSFa begins by non-dimensionalizing the equations of
motion in the vortical and wave region. In the vortex region, the variables are
non-dimensionalized by ρ0, U, L; that is,

t∗ ≡ Lt

U
, x∗ ≡ x

L
, ρ∗a ≡ ρa

ρ0

, u∗ ≡ u

U
, p∗a ≡ pa

ρ0U2
.
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We further set

p∗a = p∗0(1 + γM2p), ρ∗a = 1 +M2ρ, (3.8)

where p∗0 ≡ p0/ρ0U
2 = 1/γM2, since pressure and density depart from their uniform

background values by O(M2), consistent with near-incompressible motion (Crow
1970). Then the equations of motion become

(1 +M2ρ)
Du∗

Dt∗
= −∇p, (3.9a)

M2

(
Dρ

Dt∗
+ ρ∇ · u∗

)
+ ∇ · u∗ = 0, (3.9b)

1 + γM2p = (1 +M2ρ)γ. (3.9c)

In the wave region, as the appropriate length scale and time scale are M−1L and
M−1L/c0 = L/U, the variables are non-dimensionalized by ρ0, c0, M

−1L; that is,

T ∗ ≡ Lt

Mc0

(= t∗), X ∗ ≡ Mx

L
, H∗a ≡ ρa

ρ0

, U ∗ ≡ u

c0

, P ∗a ≡ pa

ρ0c
2
0

.

As in the vortical region, we set

P ∗a = P ∗0 (1 + γM2P ), H∗a = 1 +M2H, (3.10)

where P ∗0 = 1/γ. In addition the velocity is scaled as

U ∗ = M2U . (3.11)

Then the equations become

(1 +M2H)

(
∂U

∂T ∗
+M2U · ∇U

)
= −∇P , (3.12a)

∂H

∂T ∗
+ ∇ ·U +M2∇ · (UH) = 0, (3.12b)

1 + γM2P = (1 +M2H)γ, (3.12c)

where the gradient operator acting on a wave-region quantity corresponds to differ-
entiation with respect to X ∗.

To allow for motion of the vortex, the spatial coordinate ξ is defined such that

ξ = x∗ − x∗c(t∗), (3.13)

where x∗c is the centre of the vortical region. This definition of the centre is somewhat
arbitrary and in fact all that matters is that x∗c move with the vortex (LSFa).

The incoming wave wavenumber k is non-dimensionalized using the wave-region
length scale as K∗ = LM−1k. Then the final result of LSFa is that the pressure is
given at O(δM4) = O(aM2) in the far field by

P41 =
1

4π
e−iω∗0 t∗

{
eiK∗X∗c ∂

∂Ξ

[(
I ∗ · ∇+ iω∗0I

∗
1

) eiK∗R∗

R∗

]

+eiK∗X∗
(
∂

∂Ξ
− iω∗0

)
I ∗ · ∇ 1

R∗

}
, (3.14)

where Ξ is the wave-region counterpart of ξ. The vector I ∗ is the vortex centroid of
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the flow (Saffman 1992), defined by

I ≡ 1

2

∫
x× ω(x) d3x ≡ L3UI ∗. (3.15)

The vortex centroid is conserved in incompressible flow, and is hence conserved to
O(M2).

In the far-field limit R∗ → ∞, the second of the two terms in (3.14) is O(R∗−2). The
first term contains the radiating waves, and in the limit R∗ → ∞ we have

P41 = −ω
∗2
0

4π
cos ϑ

(
I ∗ · Ξ
R∗

+ I∗1

)
ei(K∗R∗+K∗X∗c−ω∗0 t∗)

R∗
+ O(R∗−2) (3.16)

= −ω
∗2
0 I
∗

4π
cos ϑ(cos ϑ+ cos µ)

ei(K∗R∗+K∗X∗c−ω∗0 t∗)

R∗
+ O(R∗−2), (3.17)

where here ϑ is the angle subtended at the vortex between the position X ∗ and the
direction of propagation of the incident acoustic wave, and µ is the angle between
the direction of I and the direction of the propagation of the incident acoustic wave.
In dimensional form, the above result becomes

ps = −|pi|
c3

0

ω2
0I

4π
cos ϑ(cos ϑ+ cos µ)

ei(kr+kxc−ω0t)

r
+ O(r−2). (3.18)

This result can be shown to agree with the scattered sound field obtained using
the acoustic analogy approximation. Equation (17) of Lund & Rojas (1989) agrees
with (3.16), provided that in the former the Fourier transform of the vorticity is
approximated as ∫

ω(x) eik·x d3x ≈
∫

i(k · x)ω(x) d3x. (3.19)

This approximation is valid provided the length scale of the vortical region is small
compared to the wavelength of the incident acoustic waves, which is precisely the
condition required for our analysis to be valid. The applicability of the acoustic anal-
ogy approximation to vortices with length scale comparable with the wavelength of
the incident waves is an open question, which cannot be addressed by the asymptotic
analysis presented here.

4. Numerical computations
4.1. Numerical method

The numerical method is similar to that used by Inoue et al. (2000). The axisymmetric
compressible Navier–Stokes equations are solved using a finite-difference method. In
order to resolve small-amplitude acoustic waves, the sixth-order compact scheme of
Lele (1992) is used for spatial derivatives and a fourth-order Runge–Kutta scheme
is used to integrate the solution in time. The non-reflecting boundary conditions of
Poinsot & Lele (1992) are used at the boundaries of the numerical domain. In these
non-reflecting boundary conditions small deviations in the far field are decomposed
into characteristic waves, whose amplitudes Ai are either specified or evolve in time,
depending on whether they are incoming or outgoing. Taking the one-dimensional
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Euler equations for simplicity, this corresponds to

Ai = 0 for incoming waves,

∂Ai

∂t
+ λi

∂Ai

∂z
= 0 for outgoing waves,

where the λi are the speeds of the characteristic waves. For subsonic flow, A1 =
p′ − ρ0c0u

′ with λ1 = u− c0 corresponds to the incoming acoustic wave. Thus the
boundary conditions can also be used to inject a wave into the domain by specifying
the amplitude of the incoming acoustic wave as A1 = pi (Colonius et al. 1994). Non-
uniform grids are used, with the grid spacing set small enough to resolve both vortex
and acoustic waves.

The largest grid spacing is 0.05λ, while the grid spacing around the vortices is
0.05R0 for HSV and 0.02R0 = 0.067Rc for the Gaussian vortex ring. The grids are
stretched gradually through the domain with an increment of less than 4% per grid
point. It is known that instability arises for non-uniform grids with these schemes. To
remove this instability, we use a pentadiagonal compact filtering scheme (Lele 1992)
which is optimized to damp short waves but not to affect acoustic waves.

For each set of parameters three calculations are carried out to obtain the scattered
wave: (i) solving for the vortex only (the corresponding pressure field is denoted by
pv); (ii) solving for the incoming wave only (pi); (iii) solving for the full vortex and
incoming wave (pt). The acoustic signal is obtained from pa = pt−pv: this subtraction
removes the pressure field due to the vortex and the initial transient waves which are
discussed in Appendix B. The scattered wave is then obtained by ps = pa − pi. All
calculations are carried out in the frame moving with the vortex. The speed of the
frame, Uf , however, is 7% to 8% lower than the initial speed of the vortex since the
speed of the vortex decreases gradually owing to dissipation.

Initial conditions are characterized as follows. The velocity field is either that of
HSV or that of a Gaussian vortex ring. For HSV, we use its compressible extension
(LSFb), which includes an O(M2) correction to the original HSV. The pressure and
the density are obtained from the condition of uniform entropy and the Poisson
equation

∇2

(
p

ρ
+
γ − 1

2γ
|u|2
)

= −γ − 1

γ
∇ · (ω × u). (4.1)

For HSV, the Mach numbers based on the vortex speed are Mv = ±0.05, ±0.15,
±0.3, where positive and negative Mv correspond to vortices moving in the +z-
direction and −z-direction, respectively. Note that the incoming wave propagates
in the +z-direction. The Reynolds number based on the speed of sound at infinity
is Rea = ρ0c0R0/µ0 = 25 000. For the incoming wave, we consider not only long
waves but also waves whose wavelength is comparable to the size of vortex. The
wavelength of the incoming wave is set to λ/R0 = 2, 5, 10, and its amplitude is set to
|pi|/ρ0c

2
0 = 10−5. The pressure is observed at r/R0 = 10, 20, 30 in the moving frame.

The domain of calculation is 0 6 |x|, σ 6 50R0. For a Gaussian vortex ring the core
radius is fixed at Rc = 0.3R0.

4.2. Scattering by HSV

Figure 2 shows an example of the scattered wave as a function of time. The incoming
wave, which is injected at the boundary x = −50R0, starts to interact with the vortex
at around t = 50R0/(c0−Uf). Then the scattered wave starts to propagate spherically.
The undershoot and the overshoot of the scattered wave in the first period are due
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Figure 2. Evolution of scattered wave pressure ps for Mv = 0.15 and λ/R0 = 5. The observation
points are at r/R0 = 10, 20 and 30, and θ = 0◦.
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Figure 3. Scattering amplitude multiplied by r/R0 for Mv = 0.15 and λ/R0 = 5. ©, r/R0 = 10;
4, r/R0 = 20; +, r/R0 = 30.

to smoothing of the incoming wave; the incoming wave is filtered according to

pin(t) = |pi|F(t) sin(ω′0t), F(t) =

{
1
2
[1− cos(ω′0t)] for 0 6 c0t/R0 6 π/ω′0,

1 for c0t/R0 > π/ω′0,
(4.2)

in order to avoid a discontinuity, where ω′0 = ω0(1−Uf/c0) (note that the boundary
also moves with the frame). After the first period, the amplitude of the scattered
wave is almost constant but decays slightly. The r.m.s. scattering amplitude ps/pi is
calculated by averaging over a multiple of the period of the scattered wave at each
observation point. Figure 3 shows the scattering amplitude multiplied by r/R0 against
θ for the same case. The three lines corresponding to r/R0 = 10, 20, 30 collapse,
which confirms that the scattered wave is a linear spherical wave. Hereafter we use
the data at r/R0 = 20.

Figure 4 shows the scattering amplitudes for the large-wavelength case λ = 10R0

observed at r/R0 = 20. For |Mv| = 0.05, all three predictions are in good agreement
with DNS. For |Mv| = 0.15, 0.3 MAE does not give a good prediction. The Born
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Figure 4. Scattering amplitudes. λ/R0 = 10, r/R0 = 20. (a) Mv = 0.05, (b) Mv = −0.05,
(c) Mv = 0.15, (d ) Mv = −0.15, (e) Mv = 0.3, ( f ) Mv = −0.3. �, DNS results; ——, predic-
tions by MAE; . . . . . . , predictions by the Born approximation of Kambe & Mya Oo (1981); – – – –,
predictions by the present, improved, Born approximation.

approximation solution of Kambe & Mya Oo (1981) gives a better prediction in
the whole range, but the difference with DNS is about 20% around θ = 0◦ for
|Mv| = 0.3. The present improved Born approximation gives the best prediction for
θ < 90◦; it overpredicts around θ = 180◦. We have no satisfactory explanation for this
phenomenon at present. MAE gives the same prediction for positive and negative
Mach numbers. Thus the difference between DNS and MAE is mainly due to the
Doppler effect and the quadrupole term.

Figure 5 shows the scattering amplitudes for λ = 5R0. The results are quite similar
to those for λ = 10R0. All three predictions agree well with DNS for |Mv| = 0.05.
The difference between MAE and DNS is quite large for |Mv| = 0.15 and 0.3, and
the improved Born approximation gives the best prediction. The DNS and Born
approximations give smaller values in the range θ > 90◦ for λ = 5R0 than for
λ = 10R0.

Figure 6 shows the scattering amplitudes for the shortest wavenumber λ = 2R0.
The scattering amplitude almost vanishes in the range θ > 90◦, as predicted by the
Born approximations. For the lowest Mach number |Mv| = 0.05 studied in this paper,
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Figure 5. Scattering amplitudes. λ/R0 = 5, r/R0 = 20. (a) Mv = 0.05, (b) Mv = −0.05,
(c) Mv = 0.15, (d ) Mv = −0.15, (e) Mv = 0.3, ( f ) Mv = −0.3. Symbols and lines as in figure 4.

we see reasonable agreement between DNS and Born approximations. The MAE
solution, which assumes long incoming waves, fails to predict the correct directivity
of the scattering amplitude. For |Mv| = 0.15 and 0.3, however, MAE gives rather
good values for the scattering amplitude around θ = 0◦. On the other hand, the Born
approximations overpredict the scattering amplitude for Mv > 0 and underpredict it
for Mv < 0. This is probably because the scattering amplitude is so large that the
Born approximation, in which the total acoustic wave should not differ much from
the incoming wave, breaks down. It is worth noting that the scattering amplitude
for Mv > 0 is smaller than that for Mv < 0. For longer wavenumbers λ = 5R0, 10R0,
the scattering amplitude for Mv > 0 around θ = 0◦ is larger than that for Mv < 0 by
O(M) because of the Doppler factor.

4.3. Scattering by a Gaussian vortex ring

Figures 7 and 8 shows the r.m.s. scattering amplitudes for the Gaussian vortex ring.
Although the vorticity distribution is quite different from that of HSV, the results are
similar to those of HSV. For the shorter wavelength λ/R0 = 2, the scattered wave is
restricted to a slightly narrower region for the Gaussian vortex ring than for HSV
of the same Mach number as shown in figure 9. This is also predicted by the Born
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Figure 6. Scattering amplitudes. λ/R0 = 2, r/R0 = 20. (a) Mv = 0.05, (b) Mv = −0.05,
(c) Mv = 0.15, (d ) Mv = −0.15, (e) Mv = 0.3, ( f ) Mv = −0.3. Symbols and lines as in figure 4.

approximations, but they do not give correct magnitudes of the scattering waves for
this case.

4.4. The validity of the Born approximations

It is of some interest to check the assumption required for the Born approximations
a posteriori. Figure 10 shows contours of instantaneous pressure for the scattered
wave ps for HSV with Mv = 0.15 and λ/R0 = 10. In the whole region (figure 10a)
the scattered waves propagate spherically. In the neighbourhood of HSV (figure 10b),
where the word ‘scattered wave’ is not appropriate for ps, the distribution of ps is
affected by the steady pressure distribution around the vortex. The value of ps is larger
inside the vortex than outside. We are interested in the magnitude of ps since the Born
approximations assume that ps is small. Figure 11 shows the spatial maximum of ps as
a function of time. It oscillates with a period which is close to one half of the period
of the incoming wave in moving coordinates. Its magnitude is less than 0.15|pi|. Thus
in this case it is reasonable that the Born approximations give good predictions for
the scattering amplitudes. For HSV with Mv = 0.3 and λ/R0 = 2, however, the spatial
maximum of ps oscillates around 1.2|pi|. For this case we cannot expect agreement
between DNS and the Born approximations as seen in figure 6(e).



Axisymmetric acoustic scattering by vortices 287

S
ca

tt
er

in
g 

am
pl

it
ud

e

0 30 60 90 120 150 180

(a)

0.001

0.002

0.003

0 30 60 90 120 150 180

0.005

0.010

õ (deg.)

0 30 60 90 120 150 180

0.005

0.010

0 30 60 90 120 150 180

0.0005

0.0010

0.0015

0.0020

0.0025

õ (deg.)

(b)

(c) (d )

S
ca

tt
er

in
g 

am
pl

it
ud

e
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Figure 8. Scattering amplitudes. Gaussian vortex ring. λ/R0 = 2, r/R0 = 20. (a) Mv = 0.15,
(b) Mv = −0.15. Symbols and lines as in figure 4.

It is also of interest to check the difference between the Born approximation
by Kambe & Mya Oo (1981) and the improved one. Figure 12 compares four lines
corresponding to f1, f1+f2, f1+f3 and f1+f2+f3 (the improved Born approximation).
For θ < 90◦, the compressibility effect f3 is small compared to f1 and f2. For θ > 90◦,
f3 is comparable to f2. As seen in figures 4 and 5, the improved Born approximation
agrees quite well with DNS for θ < 90◦ but not for θ > 90◦. Thus including the
quadrupole effect f2 is crucial to the improvement of the Born approximation.

4.5. Total scattering cross-section

The total scattering cross-section is calculated from

Σ = 2π

∫ π

0

p2
s

p2
i

r2 sin θ dθ (4.3)
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Figure 11. Maximum values of ps for HSV with Mv = 0.15, λ/R0 = 10.

for the present axisymmetric case. Figure 13 shows the total scattering cross-section
for HSV. Note that the MAE values scale as

Σ ∝M2
v ω

4
0 ∝M2

v λ
−4. (4.4)

The agreement in the scattering cross-section between DNS and the three predic-
tions is consistent with that for scattering amplitude: there is good agreement between
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DNS and the present Born approximation except for |Mv| = 0.15, 0.3 and λ = 2R0.
The deviation is rather large for Mv = −0.3 and λ = 10R0 where the present Born
approximation gives too large a value in 90◦ < θ < 180◦. It should be noted that the
value of Σ differs by a factor of 2–4 for |Mv| = 0.15, 0.3 and λ = 2R0.

5. Conclusions
Acoustic scattering by HSV and a Gaussian vortex ring has been studied by DNS,

and compared with theoretical predictions by MAE and the Born approximation.
For long waves with λ/R0 = 5, 10, the three predictions are in reasonable agreement
with the DNS results when the Mach number is sufficiently small (|Mv| = 0.05). For
moderate Mach numbers |Mv| = 0.15, 0.3, the improved Born approximation gives
the best prediction and the difference between DNS and MAE becomes larger. For
short waves λ/R0 = 2, MAE fails to predict the directivity of the scattered wave
correctly. The improved Born approximation is in good agreement with DNS for
small Mach number |Mv| = 0.05. For moderate Mach numbers |Mv| = 0.15, 0.3,
however, it fails to give correct magnitudes of the scattered wave while it predicts the
directivity correctly.
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These results may be understood if we recall the assumptions required for MAE
and the Born approximation. MAE requires that the Mach number of the flow be
small and the wavelength of the incoming wave be large. On the other hand the
Born approximation requires only that the magnitude of the scattered wave be small,
though this condition is readily satisfied for large wavelengths as inferred from the
MAE result ps/|pi| ∝ Mλ−2. This is one of the reasons why the Born approximation
has a wider range of validity. Another reason is that the Born approximations used
in the present study include higher-order effects of Mach number. It should be noted
that the Born approximation is much improved by including the Doppler factor
1 −Mv cos θ and the higher-order terms in the Lighthill tensor. MAE should give
better predictions if we include higher-order terms, but this is not an easy task.

The Born approximations are not rational derivations, but the results of this study
(see figure 10) show why they are effective approximations in the parameter range
examined, and hence verify their validity. This is important to validate their use in
other situations.

Finally, we remark on the effect of the problem being three-dimensional on the
acoustic scattering by vortices. There are two differences between the present three-
dimensional case and two-dimensional scattering by a line vortex. First, in the present
case the directivity of the scattering amplitude depends rather weakly on the details
of the vortex, namely Mach number and vorticity distribution. As remarked above,
the major dependence comes from the Doppler effect. In the case of a line vortex,
the directivity depends on the details of the vortex in a more significant way. For
example, the number of peaks in the scattering amplitude increases with Mach
number (Colonius et al. 1994). This feature influences attempts to use scattering data
to measure the parameters of compact vortices: we cannot deduce much information
from them even when the wavelength is comparable to the size of vortex (λ/R0 = 2).
Second, as seen in figure 3, the scattering amplitude is inversely proportional to the
distance from vortices, as in the case of linear waves generated by a compact source.
In the two-dimensional case, when the total circulation of the vortices is not zero,
the scattering amplitude does not decay as r−1/2, which would be the case for linear
waves generated by a two-dimensionally compact source. From an analytical point of
view, long-range refraction effects are mainly responsible for these differences. They
are strong for line vortices with non-vanishing circulation, but absent for compact
vortices.

Y. H. is grateful for the visiting research program by SVBL of Kyushu Institute of
Technology. S. G. L. S. acknowledges a UCSD Faculty Career Development Program
award. The order of authorship is alphabetical.

Appendix A. Improved Born approximation
We seek an expression for the solution to

1

c2
0

∂2ps

∂t2
− ∇2ps =

∂2

∂xi∂xj
(ρinvivj), (A 1)

where ρin is the incoming wave and v is the velocity field of the vortex ring. In the
following we proceed as in Kambe & Mya Oo (1981). Since ρinvivj decays faster than
|x|, the solution to (A 1) is given by

ps(t, x) =
1

4πc2
0

ninj

|x|
∂2

∂t2

∫
(ρinvivj)t−r/c0

dy + O

(
1

|x|2
)
, (A 2)
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where n = x/|x| and r = |x− y| (Goldstein 1976). We take the incoming wave to be

ρin =
|pi|
c2

0

exp[i(k0x1 − ω0t)] (A 3)

and write Bij = vivj . By assuming that the size of vortex ring is much smaller than |x|
and expanding r as r = |x| − (x · y)/|x|+ O(|x|−1), we have

ps(x, t) =
|pi|

4πc4
0

ninj

|x|
∂2

∂t2

∫
Bij

(
t− r

c0

, y

)
exp

(
i

[
k0y1 − ω0

(
t− r

c0

)])
dy

=
|pi|

4πc4
0

ninj

|x|
∂2

∂t2

{
exp[−i(ω0t− k0|x|)]

∫
Bij

(
t− r

c0

, y

)
exp(−iκ · y) dy

}
+O

(
1

|x|2
)
, (A 4)

where κ = k0(n − i) and il = δ1l is the unit vector in the direction of the incoming
wave. Using Fourier transformation, the integral in the above equation becomes∫

Bij

(
t− r

c0

, y

)
exp(−iκ · y) dy =

1

2π

∫
B̃ij(ω, κ∗) exp

[
iω

(
t− |x|

c0

)]
dω, (A 5)

where κ∗ = κ− (ω/c0)n. Since the vortex ring is steady in the moving frame, we have

B̃ij(ω, κ) = 2πB̃ij(κ)δ(ω + κ ·U ), (A 6)

where

B̃ij(κ) =

∫
B′ij(y) exp(−iκ · y) dy, (A 7)

for B′ij(y) = Bij(t, y −U t). Using B̃ij(k), the integral (A 5) becomes∫
Bij

(
t− r

c0

, y

)
exp(−iκ · y) dy

=

∫
B̃ij(κ∗)δ(ω + κ∗ ·U ) exp

[
iω

(
t− |x|

c0

)]
dω, (A 8)

=
1

1−Mn

B̃ij(κ0) exp

[
iβω0

(
t− |x|

c0

)]
, (A 9)

where

κ0 = (1− β)k0n− k0i (A 10)

β =
M1 −Mn

1−Mn

, M1 =
U · i
c0

, Mn =
U · n
c0

. (A 11)

Finally we obtain

ps = |pi| 1

|x|f(n, i) exp

[
−iωs

(
t− |x|

c0

)]
, (A 12)

where ωs = (1− β)ω0 and

f(n, i) = − ω2
s

4πc4
0

1

1−Mn

ninjB̃ij(κ0). (A 13)

A similar analysis with ρinvivj replaced by ρin(c2 − c2
0)δij gives (3.7).
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Figure 14. Evolution of pressure pv − p0 for two types of initial conditions: HSV (solid lines) and
compressible HSV (broken lines). Mv = 0.15, r/R0 = 10. (a) θ = 0◦, (b) θ = 90◦.

Appendix B. Initial transient
The initial conditions prepared as we describe in § 4.1 are not steady solutions to the

compressible Navier–Stokes equations, which include dissipation and compressibility.
As a result, calculations including vortices also contain transient waves. These are
emitted at the beginning of the calculation, so we call them initial transients. It is
of some interest to see the difference in initial transients between the incompressible
HSV and the compressible HSV (figure 14). Initial transients are seen at around
c0t/R0 = 10. The magnitude of initial transients is smaller for the compressible
HSV than for the incompressible HSV, while the difference is small for θ = 90◦.
The reason why using the compressible HSV by LSFb instead of the incompressible
HSV does not greatly reduce the initial transients is probably that it has an O(M2)
discontinuity in the radial component of velocity at the deformed boundary. We avoid
this discontinuity by choosing the boundary between inner and outer solutions for
radial velocity so that it is continuous, but this deformation of the boundary is only
a compromise as it produces additional vorticity. For all practical purposes, however,
subtracting pv from pt perfectly removes the initial transients and they do not affect
the scattered waves.
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